Merus closing in on cancer

ADCIonics™ Bispecific ADC Program

Peter Lowe 14 May 2024

Disclaimer

This presentation (including any oral commentary that accompanies this presentation) contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained in this presentation that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation statements regarding the impact our Biclonics® and Triclonics® platforms can have on cancer, our intellectual property, our product candidates' potential to treat certain types of tumors, the timing of regulatory filings and the timing and anticipated data read-outs, updates or results from our clinical trials and our collaborations, and anticipated cash runway. These forward-looking statements are based on management's current expectations. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including, but not limited to, the following: we have incurred significant losses, are not currently profitable and may never become profitable; our need for additional funding, which may not be available and which may require us to restrict out operations or require us to relinquish rights to our technologies or antibody candidates; potential delays in regulatory approval and impacts of the market volatility, and global conflict in Russia, Ukraine and the Middle East, which would impact our ability to commercialize our product candidates and affect our ability to generate revenue; the unproven approach to therapeutic intervention of our Biclonics[®], and Triclonics[®] technology; our limited operating history; economic, political, regulatory and other risks involved with international operations; the lengthy and expensive process of clinical drug development, which has an uncertain outcome; the unpredictable nature of our stage of development efforts for marketable drugs; potential adverse public reaction to the use of cancer therapies; potential delays in enrollment of patients, which could affect the receipt of necessary regulatory approvals; failure to obtain marketing approval internationally; failure to compete successfully against other drug companies; potential competition from other drug companies if we fail to obtain orphan drug designation or maintain orphan drug exclusivity for our products; our reliance on third parties to conduct our clinical trials and perform clinical development and the potential for those third parties to not perform satisfactorily; our reliance on third parties to manufacture our product candidates, which may delay, prevent or impair our development and commercialization efforts; protection of our proprietary technology; our patents being found invalid or unenforceable; potential lawsuits for infringement of third-party intellectual property; our ability to attract and retain key personnel; managing our growth could result in difficulties.

These and other important factors discussed under the caption "Risk Factors" in our Annual Report on Form 10-Q for the period ended March 31, 2024 filed on May 8, 2024 with the Securities and Exchange Commission, or SEC, and our other reports filed with the SEC, could cause actual results to differ materially from those indicated by the forward-looking statements made in this presentation. Any such forward-looking statements represent management's estimates as of the date of this presentation. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.

Antibody Drug Conjugates

A conventional ADC

Antibody Drug Conjugates

Current monoclonal ADCs have limitations

	Limitations of conventional ADCs	Opportunities for bispecific ADCs
Selectivity	A single target on tumor and non-cancerous cells, leading to on target, off tumor tox	Increased selectivity for tumors that express two targets
Internalization	Drug delivery may be limited by internalization rate	Engaging two targets or epitopes to increase internalization
Cell killing	Limited selective tumor cell killing	Delivering drug to tumor cells expressing both targets

Bispecific Antibodies as ADCs

The optimal combination is a complex puzzle to solve

Screening a lot of clones is required to find the optimal characteristics

- Selectivity for target tissue
- Selective internalization
- Selective cell killing
- Ease of manufacturing

Merus Multiclonics[®] Platforms

Merus Biclonics®: Fully Human IgG1 Bispecific Antibodies

Made essentially like monoclonal antibodies to facilitate discovery and development

Screening for Optimal Capabilities in Multispecific Antibodies

Finding multispecifics at the speed and scale others find monoclonals

Generate Human cLC Antibodies

Evaluate Thousands of Multispecific Abs

Identify Best Candidates

Identification of best candidates from thousands of different Biclonics[®] and Triclonics[®] against multiple different targets

Patented Mouse Technology

"Merus Mouse" (MeMo[®]) to generate diverse, high quality common light chain (cLC) antibody panels

Established Inventory

Diverse panels of cLC antibodies against numerous targets

Multiclonics® Libraries

Robotics generate thousands of Multiclonics[®] by combining cLC antibody panels and our patented "DEKK" IgG heterodimerization technology

Unbiased Screening

In-format, unbiased functional screening in relevant cellular assays

Biclonics® Manufacturing

Biclonics[®] can be manufactured similarly to normal IgGs

Leveraging standard mAb approaches:

- Single producer cell lines with up to in 1 4.5 g/L production
- Purified according to standard IgG1 procedures
- Stable liquid formulations to support clinical administration
- Drug product stability confirmed for up to 36 months

Clinically Validated Biclonics® Tested for ADC Compatibility

Clinical stage assets used to assess platform compatibility for ADClonics[™]

MCLA-129 EGFR x c-MET bispecific

Petosemtamab (MCLA-158) EGFR x LGR5 bispecific

Evaluating MCLA-129 and MCLA-158 as ADClonics[™]

Fully human IgG1 bispecific antibodies

Can clinically validated drug-linkers be conjugated to Biclonics[®]?

- Are Biclonics[®] compatible with standard conjugation methods to make ADClonics[™]?
- Do ADClonics[™] demonstrate favorable biophysical properties?
- Do they preferentially bind and internalize on dual target expressing cells?
- Do they selectively kill dual target-expressing cells?

ADClonics™: Assessing Conjugation Efficiency

High degree of protein monomer by SEC;
Target DAR of ~4 demonstrated by HIC

Moriic

¹² DAR, drug antibody ratio

ADClonics™: Favorable Biophysical Properties

Stability and binding maintained

- Average intact DAR >75% after incubation in human serum over 96 hours at 37 °C
- Repeated freeze thaw cycles > 95% ADC monomer
- Target antigen binding retained in ADC format

ADClonics™: Favorable biophysical properties

IgG Fc domain function maintained

-20

20

Time (sec)

C1q C1q (mu Absorbance OD (450 nm) EGFRxLGR5 Rituximab -D- EGFRxLGR5 ADC -**o**- lgG4 (450 3 EGFRxcMET Ω -D- EGFRxcMET ADC O Absorban 0.01 0.1 10 100 0.01 100 0.1 10 Concentration (µg/mL) Concentration (µg/mL) FcRn binding SPR (Biacore) FcγR binding SPR (Biacore) pH 7.4 pH 6.0 EGFRxLGR5 EGFRxLGR5 EGFRxLGR5 250 200 conjugated Unconjugated Unconjugated 150 (RU) 100 60 80 100 Time (Sec) 250 200 ß 5 150 ADC ADC ADC 100

-20

Time (sec)

C1q binding ELISA

- C1q binding retained in ADC format
- FcRn binding retained in ADC format
- FcγR binding retained in ADC format

ADClonics[™]: Preferentially Bind, Internalize & Kill Dual-Target Expressing Cells

Selective cell binding, internalization and cell killing with EGFR x c-MET (MCLA-129) ADC

ADCIonics™ Preferentially Kill Target Expressing Cells

Selective cell binding and cell killing with EGFR x LGR5 (MCLA-158) ADC

Antibody Drug Conjugates

Merus' Biclonics[®] ADCs may solve current limitations

	Limitations of conventional ADCs	Opportunity for bispecific ADC
Selectivity	A single target on tumor and non-cancerous cells, leading to on target, off tumor tox	Increased selectivity for tumors that express two targets
Internalization	Drug delivery may be limited by internalization rate	Engaging two targets or epitopes to increase internalization
Cell killing	Limited selective tumor cell killing	Delivering drug to tumor cells expressing both targets

Conclusions

Merus ADClonics[™] can address limitations of conventional monoclonal antibody-based ADC:

- Selectivity from binding two targets
- Selective internalization
- Selective cell killing

The Merus Multiclonics[®] platforms are ideally suited to generate ADClonics[™]- bispecific ADC with the Biclonics[®] format and platform

- Large, diverse panels and high throughput screening
- Robust and developable as ADC

MCLA clinical candidates as ADClonics[™] offer potential advantages to monospecific ADCs

Merus closing in on cancer

www.merus.nl